Disclaimer

We hope you find the information on our website and resources useful.

Animations

This resource has been designed with animations to make it as fun and engaging as possible. To view the content in the correct formatting, please view the PowerPoint in 'slide show mode'. This takes you from desktop to presentation mode. If you view the slides out of 'slide show mode', you may find that some of the text and images overlap each other and/or are difficult to read.
To enter slide show mode, go to the slide show menu tab and select either from beginning or from current slide.

Maths
 Multiplication and Division

Need a coherently planned sequence of lessons to complement this resource?

Squmre Numbers

Aim

- To find square numbers.

Success Criteria

- I can create arrays to show square numbers.
- I can write calculations to make square numbers.
- I can use the ${ }^{2}$ notation correctly.

Write calculations to match the arrays. The first one has been done for you.

$$
4 \times 2=8
$$

0000000 $7=1 \times 7$

Create arrays for the number 16. How many different formations can you make?

Square Numbers

16 counters can be organised in this way.
1 and 16 are factors of 16 .
$1 \times 16=16$ and $16 \times 1=16$

Square Numbers

16 counters can be organised in this way.
2 and 8 are factors of 16 .
$2 \times 8=16$ and $8 \times 2=16$

Square Numbers

Let's look at the number 16.

There is something special about the number 16. What do you notice about this formation?

16 counters can be organised in this way.

- 16 is a special number because it is a square number.
- A square shape has the same dimensions all around and this is the same with square numbers.
- 16 has 4 counters going across, down and even diagonally.

Using counters is a good way to investigate
if a number is a square number or not.
How could we write a calculation to match this array? What are the factors that make the product of 16 ?

To square a number, you multiply it by itself!

$4 \times 4=16$

Click on the square numbers to see the arrays.

Square Number Notation

This is the correct notation used by mathematicians when squaring numbers.

7^{2}

Consider:

How could we calculate 7 squared?

What would the calculation look like?

What would the answer be?

To square 7, you would multiply 7 by itself.

The calculation would be $7 \times 7=$

Title KS2

Square Numbers

To find square numbers.
Cut out the cards below and find and match up the arrays, calculations and square number notations. Write in the answers after each equals sign to find the square numbers.

Array	Calculation	Square Number Notation
$\begin{aligned} & 008 \\ & 088 \\ & 008 \end{aligned}$	$5 \times 5=$	$4^{2}=$
0000 0080 0008	$6 \times 6=$	$3^{2}=$
00000 00000 00000 -	$3 \times 3=$	$7^{2}=$
0000000 0000008 0000000 0000000	$4 \times 4=$	$6^{2}=$
000000 000000 000000 000008	$7 \times 7=$	$5^{2}=$

quare Numbers

To find square numbers.
numbers on the multiplication grid.

numbers on the multiplication grid.

4	5	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
4	5	6	7	8	9	10	11	12
8	10	12	14	16	18	20	22	24
12	15	18	21	24	27	30	33	36
16	20	24	28	32	36	40	44	48
20	25	30	35	40	45	50	55	60
24	30	36	42	48	54	60	66	72
28	35	42	49	56	63	70	77	84
32	40	48	56	64	72	80	88	96
36	45	54	63	72	81	90	99	108
40	50	60	70	80	90	100	110	120
44	55	66	77	88	99	110	121	132
48	60	72	84	96	108	120	132	144

quare Numbers

To find square numbers.	
Think about a strategy that you could use when multiplying two 2-digit numbers. You could use the partitioning method. For example, 14×14 can be broken down into $14 \times 10 \times 14 \times 4$.	
Multiplication Expression	Answer
15×15	196
18×18	256

ete the statements.
420
900
50 squared
1000

Diving into Mastery

Dive in by completing your own activity!

$13^{2}=169$

You would need to find a number that you can multiply by itself to create the product of 169 .

We could use knowledge of $12 \times 12=144$. This brings us close to the answer.

We need to multiply a number greater than 12 to reach 169.

The missing number is 13 as $13 \times 13=169$.

Aim

- To find square numbers.

Success Criteria

- I can create arrays to show square numbers.
- I can write calculations to make square numbers.
- I can use the ${ }^{2}$ notation correctly.

